多机房多活架构落地实践方案

作者: wencst 分类: 架构设计 发布时间: 2020-02-05 10:29 阅读: 527 次
如果将单机房“全连接”架构复制到多机房,会有大量跨机房调用,极大增加请求时延,是业务无法接受的,要想降低这个时延,必须实施“同机房连接”。
多机房多活架构,什么是理想状态下的“同机房连接”?
如上图所示,多机房多活架构,最理想状态下,除了异步数据同步跨机房通讯,其他所有通讯均为“同机房连接”:
(1)web连业务服务;
(2)业务服务连基础服务;
(3)服务连数据库,主库写,从库读,读写分离;
上述架构,每个机房是一套独立的系统,仅仅通过异步数据同步获取全量数据,当发生机房故障时,将流量切到另一个机房,就能冗余“机房级”故障,实现高可用。
上述多机房架构存在什么问题?
“异步数据同步”存在延时(例如:1min),这个延时的存在,会使得两个机房的数据不一致,从而导致严重的业务问题。
举个例子,某一个时刻,用户X有余额100元,两个机房都存储有该余额的精准数据,接下来:
(1)余额100,X在北京(就近访问机房A)消费了80元,余额仅剩20元,该数据在1分钟后会同步到机房B;
(2)余额100,X的夫人在广州(就近访问机房B)用X的账号消费了70元,余额剩余30元,该数据在1分钟后也会同步到机房A;
从而导致:
(1)超额消费(100余额,却买了150的东西);
(2)余额异常(余额是20,还是30?);
上述架构适合于什么业务场景?
任何脱离业务的架构设计都是耍流氓。
当每个机房都有很多全局业务数据的访问场景时,上述多机房架构并不适用,会存在大量数据不一致。但当每个机房都访问局部业务数据时,上述多机房架构仍然是可行的。
典型的业务:滴滴,快狗打车。
这些业务具备数据聚集效应
(1)下单用户在同一个城市;
(2)接单司机在同一个城市;
(3)交易订单在同一个城市;
这类业务非常适合上述多机房多活架构,多个机房之间即使存在1分钟延时的“异步数据同步”,对业务也不会造成太大的影响。
多机房多活架构,做不到理想状态下的“同机房连接”,有没有折中方案?
如果完全避免跨机房调用的理想状态做不到,就尽量做到“最小化”跨机房调用。
如上图所示,在非必须的情况下,优先连接同机房的站点与服务:
(1)站点层只连接同机房的业务服务层;
(2)业务服务层只连接同机房的基础服务层;
(3)服务层只连接同机房的“读”库;
(4)对于写库,没办法,只有跨机房读“写”库了;
该方案没有完全避免跨机房调用,但它做到了“最小化”跨机房调用,只有写请求是跨机房的。
但互联网的业务,绝大部分是读多写少的业务:
(1)百度的搜索100%是读业务;
(2)京东淘宝电商99%的浏览搜索是读业务,只有下单支付是写业务;
(3)58同城99%帖子的列表详情查看是读业务,只有发布帖子是写业务;
写业务比例相对少,只有很少请求会跨机房调用。
该多机房多活架构,并没有做到100%的“同机房连接”,通常称作伪多机房多活架构
伪多机房多活架构,有“主机房”和“从机房”的差别。
多机房多活架构的初衷是容机房故障,该架构当出现机房故障时,可以把入口处流量切到另一个机房:
(1)如果挂掉的是,不包含主库的从机房,迁移流量后能直接容错;
(2)如果挂掉的是,包含主库的主机房,只迁移流量,系统整体99%的读请求可以容错,但1%的写请求会受到影响,此时需要将从库变为主库,才能完全容错。这个过程需要DBA介入,不需要所有业务线上游修改。
画外音:除非,站点和服务使用内网IP,而不是内网域名连接数据库。架构师之路已经强调过很多次,不要使用内网IP,一定要使用内网域名。
伪多机房多活架构,是一个实践性,落地性很强的架构,它对原有架构体系的冲击非常小,和单机房架构相比,仅仅是:
(1)跨机房主从同步数据,会多10毫秒延时;
画外音:主从同步数据,本来就会有延时。
(2)跨机房写,会多10毫秒延时;
 
小结
(1)理想多机房多活架构,是纯粹的“同机房连接”,仅有异步数据同步会跨机房;
(2)理想多机房多活架构,会有较严重数据一致性问题,仅适用于具备数据聚集效应的业务场景,例如:滴滴,快狗打车;
(3)伪多机房多活架构,思路是“最小化跨机房连接”,机房区分主次,落地性强,对原有架构冲击较小,强烈推荐;
来源:架构师之路——微信公众号
作者:58沈剑

如果文章对您有用,扫一下支付宝的红包,不胜感激!

欢迎加入QQ群进行技术交流:656897351(各种技术、招聘、兼职、培训欢迎加入)



Leave a Reply